These pages are dedicated to seemingly impossible problems. I personally do not believe in impossible problems so that is not a real obstacle to me. I will eventually solve the puzzle, given enough time. Some of these really do not look as though there is enough data to solve it but if you are creative you see that you can figure out something. Like that temperature problem on the posers page, it only sounds strange to you if your mind does not open as wide as it could. Although there is insufficient data to calculate most of these problems, you still can do it with a little ingenuity and an open mind. A computer would help a lot. Mine saved me weeks of calculations using a pencil. 



Click here to zoom in closer 
This problem is a real fooler.
It looks simple enough but i have had a man with two degrees in mathematics
tell me it is impossible to solve. When i solved it, he refused to
believe i did it, even though the answer checked out mathematically to
be correct.
At left is a model of a house. On the left side of the house is a ten foot long ladder, leaning against the wall. On the ground at the base of the ladder is a wooden box that measures 1 foot in all directions. The ladder is touching the nearest corner of this box and the box is up against the wall as well. So then, the ladder is touching the ground, the box, and the side of the house all at the same time. How high off the ground is the point of contact with the house? 
Picture a circular field of grass. This field is 100 feet in diameter and a steel stake is driven into a point on the perimeter of this field. Attached to the stake is a 50 foot chain and on the end of the chain is attached a Goat. The question is this: What is the amount the field's total area will the goat be free to graze? (answer in square feet)
Assume that
the distance from the stake to the Goat's mouth is exactly 50 feet, just
to keep clutter out of the problem in the form of goat physiology.
This is another of those, "Gee, that doesn't sound too tough to figure..."
category posers. This looks so very easy to draw, that one
fails to see how tough it is to calculate. Calculate your answer
to three decimal accuracy.
In this problem we have a big flag pole
and a reel of one half inch diameter rope. The Flag pole is tapered
so that the base is much bigger than the very top of the pole. The
height of the pole is 40 feet and the diameter at the bottom of the pole is
24 inches. The diameter at the top of the pole is only 3 inches.
You can see that there is a taper to the pole. Now take the rope,
and starting at the bottom of the pole, begin wrapping the flag pole with the
rope. Keep each successive coil touching the previous one so there are
no gaps between the coils of rope. Continue until the entire pole has
been wrapped, from the very bottom to the very top of the pole.
The problem is: What is the length of the rope
it took to completely wrap the flag pole, top to bottom?
This
problem sounds tough doesn't it? Well it is tough.
It is so tough i almost gave up on it when it was presented to me.
However i seldom ever give up 'completely' so i just "filed the flanges
off my wheels" and did some creative thinking with the right side of my
brain instead of Mr. Mathematician on the left. Pretty soon i figured
out a simple solution that worked out just fine.

At left is a rather poor and
out of scale sketch of the problem. What we have in the top
picture is a rail road track that measures exactly one mile long.
At both ends of the track are "super stoppers" that will prevent the track
from expanding if it warms up.
